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Bouncing Bubbles

Frédéric Vincent
Anne Le Goff
Guillaume Lagubeau
David Quéré
Physique et Mécanique des Milieux Hétérogènes,
UMR 7636 du CNRS, ESPCI, Paris, France

We discuss here soap bubbles hitting a bath of water and bouncing off the surface.
We first describe the characteristics of this event, that is, the bubble deformation
during impact and the contact time associated with the rebound. Then we propose
a tentative scenario for understanding this behavior, which stresses the impor-
tance of the transient film of air between the bubble and the bath, preventing
the coalescence from taking place.

Keywords: Non-wetting; soap bubbles

1. INTRODUCTION

Adhesion and wetting are fields closely related to each other [1]. If two
solid plates stuck together with a liquid glue are separated, a crack
can propagate either along the solid (adhesive failure) or within the
liquid (cohesive failure). In the first case, the minimum energy
required for propagating the crack arises from the creation of
solid=vapor and liquid=vapor interfaces and suppression of a
solid=liquid frontier, while cohesive failure just implies the creation
of two liquid=vapor interfaces. Hence the latter scenario will be
favored if the liquid totally wets the considered solid. Conversely, a
zero-wetting situation will induce a non-adhesive behavior. Such a
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situation has attracted a lot of attention in the recent years, and it
can be achieved by a Leidenfrost effect (liquid on a very hot plate) or
with super-hydrophobic materials (such as lotus leaves or duck
feathers) [2].

In all these cases, the key fact is the existence of a film of gas
between the substrate and the deposited liquid, which prevents the
contact (and thus both wetting and adhesion). When one tries to bring
two liquids into contact, such a film generally exists only temporarily,
and it can be interesting to make it more permanent. ‘‘Special’’
conditions favor this, allowing us to observe a delay in adhesion or
in coalescence between the two bodies. Coffee drops hitting a coffee
pool often roll for a few seconds at the surface of the pool, which results
from the presence of fatty chains in the coffee solution [3], or from a
temperature difference between the drop and the bath [4]. It was also
recently demonstrated that shaking a bath of oil can stabilize oil drops
above the surface as long as shaking is maintained [5]. Here we show
that for large and relatively slow objects, such as centimeter-size soap
bubbles approaching a bath of quiescent water, the air film is persis-
tent enough for preventing the coalescence of the bubble, as proved
by its rebound. We analyze a few characteristics of this phenomenon,
and compare our results with recent findings obtained with drops.

Soap bubbles were made from a commercial dishwashing solution
(measured surface tension c ¼ 25 mN=m), by blowing in a ring first
drawn out of the solution. Varying the diameter of the ring allowed
us to change the bubble radius. Then, the bubbles were thrown
towards the surface of a large bath of water, owing to a flow of air.
Using pure water, or the same surfactant solution as the one used
for making the bubble did not affect our observations. In Figure 1,
we show what happens as a bubble (radius R ¼ 1.1 cm) hits the water
surface at V ¼ 65 cm=s, where it is observed to bounce off, after
deforming (without coalescing) during a time, s, on the order of a

FIGURE 1 Impact and rebound of a soap bubble (radius R ¼ 1.1 cm) hitting
at V ¼ 65 cm=s a pool of quiescent water. The time interval between two
successive pictures is 14 ms. It is observed that the bubble deforms without
coalescing, allowing it to store its kinetic energy, and then takes off. The
‘‘contact’’ time between the bubble and the pool is here 22� 2 ms.
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few milliseconds. About 40% of the bubbles of this size bounce—the
rest just coalesce with the bath—where they eventually form a hemi-
sphere before bursting. For larger bubbles (diameter of about 10 cm),
about 90% of them show a rebound (for impact velocities on the order
of 10 to 20 cm=s).

2. BUBBLE DEFORMATION AT IMPACT

The kinetic energy of the impinging bubble is stored during the shock,
owing to its deformation. Thus, it is observed that the amplitude of
this deformation depends on the impact velocity, V, as seen in Figure 2.

We quantify the deformation by the quantity d, the difference
between the radius of the impacting spherical bubble and half the
minor axis of its ellipsoidal shape, at maximum deformation. Since
inertia of the incoming bubble is expected to favor its deformation
while the surface tension, c, resists it, d should increase as a function
of the Weber number, which compares inertia with surface tension:
We ¼ qRV2=c, where q is the air density. Note that the repartition of
the mass in a bubble is not obvious: the mass of air is 4pqR3=3 (denot-
ing q as the air density), of the order of 4 mg for a centimeter size bub-
ble; if the water film (of density qw) has a thickness, h, of 1 micrometer,
its mass, 4pqwhR2, is about 1 mg. The mass of large bubbles
(R > 3hqw=q) is thus dominated by the contribution of air, explaining
why we used this mass in our definition of inertia in the Weber
number.

FIGURE 2 Maximum deformation of soap bubbles impacting a water pool
without coalescing. The bubble radii R and velocities V are (from left to right)
1.1 cm and 43 cm=s, 0.8 cm and 86 cm=s, and 0.6 cm and 120 cm=s. The corre-
sponding Weber numbers, We ¼ qRV2=c, which compare inertia and surface
tension, are 0.08, 0.24 and 0.35, respectively: the higher We, the larger the
deformation. We quantify the deformation by the bubble flattening d, and
denote as L the contact zone in which the bubble is parallel to the bath.
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The simplest model we can imagine is energy conservation during
impact [6]. On the one hand, this seems natural: the Reynolds number
qVR=g associated with the shock (and defined with the air density and
viscosity q and g, respectively) is typically 100, so that viscous effects
can be ignored. The kinetic energy of the impinging bubble of mass, M,
simply writes as: 1=2MV2. The increase of surface area, DA, associated
with the transformation of a sphere into an ellipsoid (denoting d as the
bubble flattening) is 16pd2=5 (a similar formula for a deforming drop
would imply a numerical factor 8p=5, but here we have two interfaces
which get deformed). The surface energy stored in this deformation is c
DA. Hence, energy conservation yields:

d � ð5=24Þ1=2R We1=2: ð1Þ

FIGURE 3 Flattening d of a bubble impacting a pool of water, as a function of
the impact velocity; d is the difference between the initial radius, R, and half
the minor axis of the ellipsoidal shape, as defined in Figure 2. The data scatter
around the law d ¼ 0.5 R We1=2 (drawn with a solid line), close to the behaviour
expected from Eq. (1).
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We compare in Figure 3 our data for the bubble deformation with the
prediction of Eq. (1). The data are obtained for bubble radii, R,
between 0.6 and 5.7 cm. The Weber number varies by a factor of 50,
between 0.007 and 0.34. In this limit of small We, it is observed that
all the data collapse into a single linear curve, in fair agreement with
the expected behavior. The numerical coefficient itself is well
described (we took 0.5 in the fit, close to the 0.45 in Eq. (1). In a few
cases, the deformation is larger than expected, which could come from
neglecting the mass of the liquid shell: if the kinetic energy is larger,
we indeed expect a greater deformation. Another source of error comes
from the velocity at impact (entering the Weber number): these bub-
bles are large and thus filmed from quite far away, so that the
measurement of small distances (from which the velocity is deduced)
can be rather imprecise (up to�20%).

Interestingly, surface energy is not only converted into kinetic
energy after impact. We can monitor the maximum height reached
by the bubble after take off. We deduce a restitution coefficient
(defined as the ratio between velocities after and before rebound) of
the order of 0.5 to 0.6, significantly lower than observed at low We
on bouncing drops [7]. Energy loss mainly comes from the transfer
of kinetic into vibrational energy: after taking off, the bubble vigor-
ously oscillates as it rises. We finally note that if the bubble hits the
pool with an angle (measured from the normal to the surface), it takes
off symmetrically towards the normal (specular reflection).

3. CONTACT TIME

Another observation on this phenomenon concerns the ‘‘contact’’ time,
s, of the impact, which can be easily deduced from high-speed images
such as displayed in Figure 1. The time s corresponds to the interval
between the moment when the bubble is tangent to the surface of
the pool (second image in Fig. 1) and the one when it leaves the bath
(just before the fourth image in Figure 1). We display in Figure 4 the
variation of this time, which is a fraction of a second for large bubbles,
as a function of the bubble radius, for impact velocities between 10 and
100 cm=s (with an average of 60 cm=s). In this logarithmic plot, we find
that the contact time rapidly increases with R, as shown by the solid
line, which indicates the slope 3=2. These measurements are quite pre-
cise, yielding error bars of the order of the dot size: uncertainty in time
and radius is�1 ms and�1 mm, respectively.

Since the impact implies an oscillation, we are tempted to introduce
the period of this oscillation. A bubble behaves as a spring of mass M
and stiffness 2c (the factor 2 arises from the presence of two
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interfaces), with a natural time scale (M=2c)1=2 [8]. If we assume that
the mass is mainly inside the bubble (M ¼ 4pqR3=3), we deduce a
contact time:

s � ðqR3=cÞ1=2: ð2Þ

If the mass is within the water shell (M ¼ 4pqwhR2), we rather expect:

s � ðqwhR2=cÞ1=2: ð3Þ

Hence, the contact time should be independent of the impact velocity
V. Moreover, it should scale as R3=2 for large bubbles (R > 3hqw=q,
on the order of 1 cm) and as R for smaller bubbles. We can see in
Figure 4 that the scaling expected from Eq. (2) is indeed well obeyed
by the data. The numerical coefficient in Eq. (2) deduced from the data
is b ¼ 3.0� 0.2, comparable with the value found for bouncing drops,
which is a ¼ 2.6� 0.2 [9]. Note that the latter value is itself larger
than the one for a freely oscillating drop (about 2.2), owing to the pres-
ence of a substrate below [10].

Comparing bubbles with drops, we could expect on the one hand a
smaller coefficient b by about 40% since the stiffness of this ‘‘spring’’

FIGURE 4 Contact time of centimetre size bubbles bouncing off a pool of
water, as a function of their size (impact velocities are in the range 10 to
100 cm=s). The full line indicates a slope 3=2, as expected from Eq. (2).
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is 2c, instead of c for a drop, for which there is only one interface. On the
other hand, three facts favor a larger coefficient: (i) Air around the bub-
ble contributes to increase the contact time. As shown by Lamb, if the
oscillating globule and surrounding medium are of the same density,
the oscillation period is increased for the simplest mode of oscillation
by a factor (5=3)1=2 (about 1.3), which corresponds to an added mass
term [11]. Together with the previous remark, this leads to a coefficient
b ¼ (5=6)1=2 a, close to a, as observed experimentally. (ii) The actual
mass of the bubble is slightly larger than assumed in Eq. (2), since
the water shell also contributes to it; as stressed above, this contri-
bution is all the larger since the bubble is small, which in our opinion
is the reason for the deviation (or scattering of the data) visible in
Figure 4 at small radii. Then, Eq. (3) should be more relevant, imposing
a smaller slope in this logarithmic representation (1 instead of 1.5) for
the law s(R). (iii) For drops, it was observed that the contact time
increases (by a factor which can be about 2) as the impact velocity
becomes small, which was shown to result from the influence of the drop
weight [9]. This could also affect our data at small impact velocities.

4. POSSIBLE CONDITION FOR BOUNCING

It is finally worth wondering how bubbles can bounce on a bath of
water, while water drops do not exhibit a similar behavior. The reason
might be the (large) size of these objects. As it approaches water, a
bubble must remove the air present between the two liquids, which
can take longer than s, the time necessary for deforming and recoiling:
then, the bubble will bounce. We denote e as the distance between the
bath and the (bottom of) the bubble. The bubble stops when viscous
effects overcome inertial ones: constructing a Reynolds number Re,
with the distance, e, that is, qeV=g, we assume that the distance in
which the bubble stops is given by Re of order 1. For our parameters,
we find that e should be in the range of 10 to 100 mm. Using backlight-
ing, together with the use of a high-speed camera of high resolution
(1200� 1600 pixels at 1000 images per second), we could show directly
the existence of the air film, and even evaluate its thickness: in
Figure 5, for a bubble of radius R ¼ 1.6 cm hitting a surface at
V ¼ 70 cm=s, we find a thickness e of 100� 25 microns, of the order
of the value expected above. Note that this experiment also confirms
that the deformation mainly concerns the bubble: the pool basically
remains flat as the bubble impacts it.

We expect a viscous drainage of air, owing to the overpressure
inside the film. The latter should just be the Laplace pressure in the
bubble, of the order of c=R. This pressure holds inside the bubble
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but also in the film, since crossing the (flat) interfaces below the bub-
ble does not imply any pressure jump. (Hydrostatic pressure is much
smaller, for such bubbles.) The mean velocity, v, of the air flow in
the film should be given by a balance between the viscous drag and
the pressure gradient, which can dimensionally be expressed as:
gv=e2 � c=RL, where L is the length of this film.

As it impacts the bath, the bubble is flattened by a quantity d,
which is given by Eq. (1). The lengths L and d might be related to
each other by the (geometrical) Hertz relationship: L � (dR)1=2. We
show in Figure 6 that the length L, easily deduced from figures such
as Figure 2, is indeed found to vary linearly with the (measured)
quantity (dR)1=2, as expected from the Hertz relation.

If we finally define the characteristic time of drainage s� by the
scaling relation s� � L=v, we find that s� should vary as gdR2=ce2.
Using Eq. (1) for the quantity d, we can thus propose the following
scaling law for the drainage time:

s� � gR3=ce2 We1=2: ð4Þ

Our criterion for non-coalescence (and thus rebound) is s < s�. In the
limit of large bubbles, s obeys Eq. (2) (as commented earlier, and found

FIGURE 5 Close-up of the bottom of the deformed bubble: backlighting
reveals the film of air, which prevents the bubble from coalescing. Its thick-
ness, e, is here 100� 25 micrometers. The bar indicates 1 mm.
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in Figure 4), so that this criterion just writes as:

R > e=Ca1=2; ð5Þ

where Ca ¼ gV=c is the capillary number associated with impact.
Taking typical values for the different parameters (e ¼ 100 mm and
V ¼ 1 m=s), we find that a bubble might bounce provided that its size
is typically 1 cm. Moreover, bubble rebounds should be favored with
increasing bubble sizes, which might be studied by establishing a sta-
tistics of the bouncing events: Eq. (5) predicts an increase of the prob-
ability of rebound, for a critical value e=Ca1=2, which depends on the
characteristics of the impact (particularly on its velocity). Similarly,
the detail of the ‘‘contact’’ might be specified: systematic studies of
the thickness of the air film (as a function of the bubble size and speed)
would be worth doing.

The criterion for bouncing might be different: soap bubbles are often
observed to hold at the bottom a drop (which results from the gravi-
tational drainage of liquid inside the soap film). A hanging drop can

FIGURE 6 Contact length of centimetre size bubbles bouncing off a pool of
water, as a function of their flattening, d. The impact velocity was varied
between 10 and 100 cm=s, allowing us to vary both d and L. The data are found
to satisfy the geometric Hertz relationship L � (dR)1=2 and the slope of the
solid line is 1.4.
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behave as a nucleator for the coalescence: if its thickness, h, is of the
order of e or larger (h > e), a contact might be established between
the drop and the pool. The criterion would, thus, be mainly related
to the velocity of impact: as proposed above, the larger this velocity,
the thinner the air film (e � g=qV), and thus the more likely the
coalescence. Following this scenario, an older bubble (for which drain-
age is more significant) should coalesce more easily.

It would also be interesting to see if rebounds are possible at large
Weber numbers, and what their characteristics are. The deformations
should become spectacular in this limit, as has been observed with
drops. But our preliminary study already shows that the delay in
coalescence between two fluid bodies (here a bath and a bubble) can
have spectacular consequences, the dynamics of which results from
a subtle interplay between inertial effects (owing to the large size of
the objects) and viscous ones (related to the thinness of the films). This
is often the case in interfacial hydrodynamics, where the coexistence of
different scales makes it necessary to take into account different types
of dynamics to elucidate the observed behaviors.
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